摘要
建立了平面四杆机构连杆曲线的结点与原动件的角位移的六次方程式 ,对连杆曲线结点的类型、存在条件及识别方法进行了研究 ,提出了以曲线的结点、回转数、变曲点、曲率极大点等为基准的连杆曲线的综合法 ,验证了几何特征值用于解决复杂曲线综合问题的快速有效性。
This paper proves that the double points of the coupler curves of Planar four-link mechanisms are determined by solving the sixth order equation respect to the angular displacement of the driving link and they are classified into the nodes and the ordinary intersections by using the relative angular displacement between the coupler and the driven links. A method for determining the inflection points, the maximum and minimum curvature points and the number of rotation of the coupler curves is proposed . According to the numbers of these characteristic points and the number of rotation .the coupler. These curves are illustrated schematically together with their appearance frequencies.
出处
《南昌航空大学学报(自然科学版)》
CAS
2003年第4期1-4,共4页
Journal of Nanchang Hangkong University(Natural Sciences)
基金
南昌航空工业学院科研基金资助项目 (EC2 0 0 2 3 0 69)
关键词
机构
连杆曲线
结点
Mechanism
Coupler Curve
Double point