摘要
对无自环、无重边的简单图,Erdos和Saucer在1974年提出如下问题:设 f(p) 是p个顶点的不含3正则子图图的最大可能边数,确定f(p).本文对p ≥4、4≤p≤40给出了f(p)的下界,对4p刁≤16给出了f(p)的值,并对4≤p ≤15得出了所有的极图.
The authors have considered only finite undirected graphs without loops or multiple edges. In 1974 Erdos and Saucer posed the problem :Let f (p) be the maximum possible number of edges in a simple graph with p vertices which contains no 3-regular subgraph. Determine f (p). In this paper,about p≥4,4≤p≤40,giving the lower bound of f(p);about 4≤p≤16,giving the value of f(p);and about 4≤p≤15,giving all of the extreme graph.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1993年第2期192-198,共7页
Journal of Dalian University of Technology
关键词
图论
3正则子图
极图
度
graph theory, 3-regular subgraph
extreme graph
degree
degree sequence