期刊文献+

ORDER RESULTS OF GENERAL LINEAR METHODS FOR MULTIPLY STIFF SINGULAR PERTURBATION PROBLEMS 被引量:2

ORDER RESULTS OF GENERAL LINEAR METHODS FOR MULTIPLY STIFF SINGULAR PERTURBATION PROBLEMS
全文增补中
导出
摘要 Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods. Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2002年第5期525-532,共8页 计算数学(英文)
基金 the National Natural Science Fundation of China. (No. 19871086 & 10101027)
关键词 singular perturbation problem STIFFNESS general linear method global error estimate singular perturbation problem stiffness general linear method global error estimate
  • 相关文献

参考文献5

  • 1Stefan Schneider.Convergence results for general linear methods on singular perturbation problems[J].BIT.1993(4)
  • 2C. Lubich.On the convergence of multistep methods for nonlinear stiff differential equations[J].Numerische Mathematik.1990(1)
  • 3E. Hairer,Ch. Lubich,M. Roche.Error of rosenbrock methods for stiff problems studied via differential algebraic equations[J].BIT.1989(1)
  • 4E. Hairer,Ch. Lubich,M. Roche.Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations[J].BIT.1988(3)
  • 5Kevin Burrage,J. C. Butcher.Non-linear stability of a general class of differential equation methods[J].BIT.1980(2)

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部