期刊文献+

无显式表达小波基的自适应选择 被引量:3

The Adaptive Selection of Wavelet Base without Analytic Equation
下载PDF
导出
摘要 研究了无显式表达小波基的自适应选择问题。从不同应用角度定义了评价小波基分解效果的两种适应度函数 ;所给出的适应度函数曲面实例充分说明了对小波进行自适应选择的必要性。利用这两种适应度函数 ,提出了一种改进的遗传算法 ,对小波参数方程中的参数进行搜索 ,并利用适应度函数对搜索结果进行评价 ,实现了信号的自适应小波基分解 ,在此基础上给出了自适应小波基分解的实例 ,并与 Daubechies小波的分解结果进行对比 。 The adaptive selection of wavelet base without analytic equation is studied in this paper for the first time. In order to realize the adaptive selection of wavelet base, firstly two fitness functions are defined to appraise wavelet bases' decomposing effect from different applying purpose. Under certain circumstance if an approximate signal needs to be emphasised, then a fitness function is defined as:F(H)=∑x∈ZS^2 jf(x)/f^2(x),on the other hand while detailed signal must be stressed then another fitness function is defined as:F(H)=∑x∈ZW^2 jf(x)/f^2(x). An example of a signal's two fitness function surfaces given in this paper shows that it's very necessary for wavelet bases to be selected adaptively according to signal's feature in wavelet transformation. An improved genetic algorithm is proposed to search the parameters in wavelet parametric equation and at the same time the fitness function is used to appraise the searching effect. When the fitness suffices the concerted requirement then the optimal wavelet is searched, so signal's adaptive wavelet decomposition is brought into effect. One example of signal's adaptive wavelet decomposition is given based on this algorithm. Compared with Daubechies wavelet's decomposing method, the adaptive wavelet's decomposing method has clear advantages.
出处 《振动工程学报》 EI CSCD 北大核心 2004年第2期243-248,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目 (编号 :5 0 30 5 0 0 5 ) 广东省自然科学基金资助项目 (编号 :980 396 )
关键词 无显式表达小波基 自适应选择 信号处理 适应度函数 genetic algorithm signal processing fitness function adaptive wavelet
  • 相关文献

参考文献3

二级参考文献12

  • 1赵纪元,何正嘉,孟庆丰,程正兴.小波包—自回归谱分析及在振动诊断中的应用[J].振动工程学报,1995,8(3):198-203. 被引量:24
  • 2Chen Hongquan,Chin J Aeronaut,1992年,5卷,3期,150页
  • 3王德人,数值逼近引论,1990年,287页
  • 4Lin S T,Mech Syst Signal Process,1997年,11卷,4期,603页
  • 5Wang W J,Mech Syst Signal Process,1995年,9卷,5期,497页
  • 6程正兴(译),小波分析导论,1995年
  • 7徐金梧,徐科.小波变换在滚动轴承故障诊断中的应用[J].机械工程学报,1997,33(4):50-55. 被引量:61
  • 8Jameson A,Schmit W,Turkel E.Numerical solutions of the Euler Equations by Finite Volume methods Using Runge-Kutta Time Stepping Schemes[]..1981
  • 9Hicks R,Henne P.Wing Design by Numerical Optimization[].Journal of Aircraft.1978
  • 10Lee J,Hajela P.Parallel Genetic Algorithms Implementation in Multidisciplinary Rotor Blade Design[].Journal of Aircraft.1996

共引文献17

同被引文献34

  • 1彭良玉,禹旺兵.基于小波分析和克隆选择算法的模拟电路故障诊断[J].电工技术学报,2007,22(6):12-16. 被引量:15
  • 2COHEN F S, FAN Z, ATTALI S. Automated inspection of textile fabric using textural models [J]. IEEE Transactions on Pattern Analyses and Machine Intelligence, 1991,13(8) :345-350.
  • 3TSAI I S, LIN C H, LIN I J. Applying artificial neural network to pattern recognition in fabric defects[J]. Textile Research Journal, 1995,65 (3) : 123-130.
  • 4STOJANOVIC R, MITROPULOS P, KOULAMAS C, et al. Real-time vision-based system for textile fabric inspection [J]. Real-Time Imaging, 2001(7) : 507-518.
  • 5CHAN C H, PANG G K H. Fabric defect detection by Fourier analysis[J]. IEEE Transactions on Industry Applications,2000,36(5) :1 267-1 276.
  • 6KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions Industry Application,2002,38 (2):425-440.
  • 7NGAN H Y T,PANG G K H,YUNG S P,et al. Wavelet based method on patterned fabric defect detection [J]. Pattern Recognition, 2005,38(6): 559-576.
  • 8SARI-SARRAF H,GODDARD J S. Vision system for on-loom fabric inspection[J]. IEEE Transactions Industry Application,1999,35 (6) :1 252-1 259.
  • 9YANG X,PANG G K H, YUNG N. Discriminative fabric defect detection using adaptive wavelet[J]. Optical Engineer, 2002,41 (12):3 116-3 126.
  • 10ABOUELELA A, ABBAS H M, ELDEEB H, et al. Automated vision system for localizing structural defects in textile fabrics[J]. Pattern Recognition Letters,2005,26(6): 1 435-1 443.

引证文献3

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部