期刊文献+

The Initial, Boundary Value Problems for a Class of Generalized Diffusion Equations 被引量:1

The Initial, Boundary Value Problems for a Class of Generalized Diffusion Equations
原文传递
导出
摘要 The behavior for a class of initial, boundary value problems of generalized diffusion equations was studied utilizing the similarity transformation and shooting technique. Numerical solutions are presented fork(s) = SM exponent M 1.0 to 5.0, and power law parameter N (N = 0.3 to 3.0). The results shown that for each fixed M, the temperature distribution e decreases with increasing in power law parameter N, and for each fixed N, the temperature distribution 6 increases with the decreasing of M. The behavior for a class of initial, boundary value problems of generalized diffusion equations was studied utilizing the similarity transformation and shooting technique. Numerical solutions are presented for k(s)=s M, exponent M=1.0 to 5.0, and power law parameter N (N=0.3 to 3.0). The results shown that for each fixed M, the temperature distribution θ decreases with increasing in power law parameter N, and for each fixed N, the temperature distribution θ increases with the decreasing of M.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2002年第1期31-34,共4页 热科学学报(英文版)
基金 Cross-Century Talents Proects of Ministry of Education of China the "973" Key Foundation under the contractNo.G l99806l5l0.
关键词 generalized diffusion equation nonlinear BOUNDARY value problem POSITIVE solution SHOOTING technique. generalized diffusion equation nonlinear boundary value problem positive solution shooting technique
  • 相关文献

参考文献5

  • 1Wang J Y.A Free Boundary Problem for a GeneralizedDiffusions Equation[].Nonlinear Analysis.1990
  • 2Vajravelu,K,Soewono,E,Mohapatra,R N.OnSolutions of Some Singular, Non-linear DifferentialEquations Arising in Boundary Layer Theory[].Journal of Mathematical Analysis and Applications.1991
  • 3Zheng Liancun,Ma Lianxi,He Jicheng.BifurcationSolutions to a Boundary Layer Problem Arising in theTheory of Power Law fluids[].Acta Mathematica Scientia.2000
  • 4Philip,JR.N-diffusion, Austral[].Journal of Physics.1961
  • 5Zheng Liancun,He Jicheng.Existence andNon-uniqueness of Positive Solutions to a Non-linearBoundary Value Problems in the Theory of ViscousFluids[].Dynamical Systems.1999

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部