期刊文献+

WAVELET ANALYSIS OF COHERENT STRUCTURES IN A THREE-DIMENSIONAL MIXING LAYER 被引量:4

WAVELET ANALYSIS OF COHERENT STRUCTURES IN A THREE-DIMENSIONAL MIXING LAYER
下载PDF
导出
摘要 Wavelet analysis is applied to the results obtained by the direct numerical simulation of a three-dimensional (3D) mixing layer in order to investigate coherent structures in dimension of scale. First, 3D orthonormal wavelet bases are constructed, and the corresponding decomposition algorithm is developed. Then the Navier-Stokes equations are transformed into the wavelet space and the architecture for multi-scale analysis is established. From this architecture, the coarse field images in different scales are obtained and some local statistical quantities are calculated. The results show that, with the development of a mixing layer, the energy spectrum densities for different wavenumbers increase and the energy is transferred from the average flow to vortex structures in different scales. Due to the non-linear interactions between different scales, cascade processes of energy are very complex. Because vortices always roll and pair at special areas, for a definite scale, the energy is obtained from other scales at some areas while it is transferred to other scales at other areas. In addition, energy dissipation and transfer always occur where an intense interaction between vortices exists. Wavelet analysis is applied to the results obtained by the direct numerical simulation of a three-dimensional (3D) mixing layer in order to investigate coherent structures in dimension of scale. First, 3D orthonormal wavelet bases are constructed, and the corresponding decomposition algorithm is developed. Then the Navier-Stokes equations are transformed into the wavelet space and the architecture for multi-scale analysis is established. From this architecture, the coarse field images in different scales are obtained and some local statistical quantities are calculated. The results show that, with the development of a mixing layer, the energy spectrum densities for different wavenumbers increase and the energy is transferred from the average flow to vortex structures in different scales. Due to the non-linear interactions between different scales, cascade processes of energy are very complex. Because vortices always roll and pair at special areas, for a definite scale, the energy is obtained from other scales at some areas while it is transferred to other scales at other areas. In addition, energy dissipation and transfer always occur where an intense interaction between vortices exists.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第1期42-52,共11页 力学学报(英文版)
基金 The project supported by the Research Fund for the Doctoral Program of Higher Education the National Natural Science Foundation for Outstanding Youth of China (19925210)
关键词 wavelet transforms numerical simulation mixing layer coherent structure wavelet transforms numerical simulation mixing layer coherent structure
  • 相关文献

参考文献2

二级参考文献3

共引文献31

同被引文献19

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部