期刊文献+

Characterization of Type p Banach Spaces by the Weak Law of Large Numbers

下载PDF
导出
摘要 For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array in a real separable Banach space of typep,we establishL r convergence theorem and a general weak law of large numbers respectively,conversely,we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.
作者 Gan Shi-xin
出处 《Wuhan University Journal of Natural Sciences》 EI CAS 2002年第1期14-19,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science F oundation of China(No.10071058)
  • 相关文献

参考文献9

  • 1de Acosta A.Inequalities for B-valued Random Vectors with Applications to the Strong Law of Large Numbers. The Annals of Probability . 1981
  • 2Adder A,Rosalsky A,Taylor R L.A weak Law for Normed Weighted Sums of Random Elements in Rademacher Type p Banach Spaces. J ournal of Multivariate Analysis . 1991
  • 3Hoffman-J rgensen,Pisier T.The Law of Large Numbers and the Central Limit Theorem in Banach Spaces. The Annals of Probability . 1976
  • 4Ordón~ez Cabrera M.Convergence of Weighted Sums of Random Variables and Uniform Integrability Concerning the Weights. Colloquium Mathematicum . 1994
  • 5Pisier G.Probabilistic Methods in the Geometry of Banach Spaces. Lecture Notes in Mathematics . 1986
  • 6Ledoux M,Talagrand M.Probability in Banach Spaces. . 1991
  • 7Sung S H.Weak Law of Large Numbers for Arrays of Random Variables. Statistics and Probability Letters . 1999
  • 8Adder A,Rosalsky A,Volodin A.A Mean Convergence Theorem and Weak Law for Arrays of Random Elements in Martingale Type p Banach Spaces. Statistics and Probability Letters . 1997
  • 9Woyczynski W A.On Marcinkiewicz -Zygmund Law of Large Numbers. Probab and Math Stat . 1980

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部