期刊文献+

Research on dependence of resistivity changing anisotropy on microcracks extending in rock with experiment 被引量:4

Research on dependence of resistivity changing anisotropy on microcracks extending in rock with experiment
下载PDF
导出
摘要 Multiple electrodes are arranged on the surfaces of cubic granite samples of different sizes according to pre-designed patterns. Smples are fully saturated with water in vacuum. Waterproof insulation glue is coated on the measuring surfact and asmall parts (including two arrises) of the adjacent surfeces of the saturated sample to ensure that the electric current flows only within the sample through the connection between the electrodes. The multiple electrodes are combined form arrays of different direction and specing with symmetrical four-clectrode method according to need of measuring of resistivity changing anisotropy, electric profiling and electric sounding. The samples are placed into container filled with water. The samples are uniaxially compressed along the direction parallel to the longest dimension of the cubic, and the variation of resistivity during the whole loading process is observed. In the experiments, some samples are loaded to rupture with macro-fractures, some are only loaded to the Stage, which shows obvious Precursors in variation of resistivity associated with the indication of forthcoming rupture. Finally a quantitative comparison batween the dominant orientation of pre-existing cracks in photo-micrography of unruptured Samles and those macro-fractures in ruptured sample is made, together with theirrespective resistivity changing anisotropy behaviors. The experimental results are the following: ① For measuring points in areas that are passed by craks or rupture bands, the directions of principal anisotropy axes dedued from four kinds of combined equation sets are essentially identical with each other, and accord with the orientation of cracks or main rupture bands approximately. For measuring points in areas without crack or rupture band passing through, either the directions of calculated principal anisotropy axes by different combinatorial arrays are inconsistent with each other, or the principal anisotropy axis cannot be determined, especially in the cases where the crack plane is parallel to the measuring surface.② The dominant orientation of microfractures or rupture bands shown from micrographs is close to the direction of principal anisotropy axis along which the variation in resistivity is the greaest.③ The results of electric profiling can be used for detecting the localization of cracks. Multiple electrodes are arranged on the surfaces of cubic granite samples of different sizes according to pre-designed patterns. Smples are fully saturated with water in vacuum. Waterproof insulation glue is coated on the measuring surfact and asmall parts (including two arrises) of the adjacent surfeces of the saturated sample to ensure that the electric current flows only within the sample through the connection between the electrodes. The multiple electrodes are combined form arrays of different direction and specing with symmetrical four-clectrode method according to need of measuring of resistivity changing anisotropy, electric profiling and electric sounding. The samples are placed into container filled with water. The samples are uniaxially compressed along the direction parallel to the longest dimension of the cubic, and the variation of resistivity during the whole loading process is observed. In the experiments, some samples are loaded to rupture with macro-fractures, some are only loaded to the Stage, which shows obvious Precursors in variation of resistivity associated with the indication of forthcoming rupture. Finally a quantitative comparison batween the dominant orientation of pre-existing cracks in photo-micrography of unruptured Samles and those macro-fractures in ruptured sample is made, together with theirrespective resistivity changing anisotropy behaviors. The experimental results are the following: ① For measuring points in areas that are passed by craks or rupture bands, the directions of principal anisotropy axes dedued from four kinds of combined equation sets are essentially identical with each other, and accord with the orientation of cracks or main rupture bands approximately. For measuring points in areas without crack or rupture band passing through, either the directions of calculated principal anisotropy axes by different combinatorial arrays are inconsistent with each other, or the principal anisotropy axis cannot be determined, especially in the cases where the crack plane is parallel to the measuring surface.② The dominant orientation of microfractures or rupture bands shown from micrographs is close to the direction of principal anisotropy axis along which the variation in resistivity is the greaest.③ The results of electric profiling can be used for detecting the localization of cracks.
出处 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第3期331-341,共11页
关键词 electric resistivity of rock geoelectric resistivity anisotropy in resistivity earthquake geologic hazard electric resistivity of rock geoelectric resistivity anisotropy in resistivity earthquake geologic hazard
  • 相关文献

同被引文献154

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部