期刊文献+

Granite deformation and behavior of acoustic emission sequence under the temperature and pressure condition at different crust depths

Granite deformation and behavior of acoustic emission sequence under the temperature and pressure condition at different crust depths
下载PDF
导出
摘要 Results of triaxial compression experiment results show that granite rock strength increases with the depth until 30 km. In shallow crust, rock failure exhibits abrupt or quasi-abrupt instability under lower pressure. Acoustic Emission (AE for short) distributed almost uniformly before and after failure. Go through downwards into the depth range with progressive failure feature, there are no or only a few number of AE before and after failure. In deeper range, rock failure shows some feature of quasi-abrupt instability under high pressure. There are still few AE before failure, but with the stick-slip, much more An events were detected after failure. Under the temperature and pressure condition of more deep crust (about 26 km), rock failure takes abrupt instability under high pressure as main feature, there are dense AE activities before failure and cumulated frequency of AE increases exponentially before the failure. In about 35 km depth range, rock strength decreases quickly with the depth and sample exhibits semi-ductile or ductile progressive fails, there are no AE being detected before and after failure. The b value of AE sequence before failure seems a little smaller than that after failure, and b value roughly decreased with depth. The numerical range of index α is the widest in about 18 km depth and becomes narrow in the condition of more shallow or more deep crust. So, when the temperature and pressure condition simulating the real environment of focal depth changes from shallow to deep in the crust, the range of a of microfracture sequence would undergo such an evolvement process that a changes from narrow to wide and then to narrow again. Results of triaxial compression experiment results show that granite rock strength increases with the depth until 30 km. In shallow crust, rock failure exhibits abrupt or quasi-abrupt instability under lower pressure. Acoustic Emission (AE for short) distributed almost uniformly before and after failure. Go through downwards into the depth range with progressive failure feature, there are no or only a few number of AE before and after failure. In deeper range, rock failure shows some feature of quasi-abrupt instability under high pressure. There are still few AE before failure, but with the stick-slip, much more An events were detected after failure. Under the temperature and pressure condition of more deep crust (about 26 km), rock failure takes abrupt instability under high pressure as main feature, there are dense AE activities before failure and cumulated frequency of AE increases exponentially before the failure. In about 35 km depth range, rock strength decreases quickly with the depth and sample exhibits semi-ductile or ductile progressive fails, there are no AE being detected before and after failure. The b value of AE sequence before failure seems a little smaller than that after failure, and b value roughly decreased with depth. The numerical range of index α is the widest in about 18 km depth and becomes narrow in the condition of more shallow or more deep crust. So, when the temperature and pressure condition simulating the real environment of focal depth changes from shallow to deep in the crust, the range of a of microfracture sequence would undergo such an evolvement process that a changes from narrow to wide and then to narrow again.
出处 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期424-433,共10页
基金 CSB!Project 95-04-02-01 Natural Foundation of Shandong Province!Project Y97E02079 fund of Laboratory of Tectonophysics, CS
关键词 high temperature and high pressure GRANITE deformation and failure acoustic emission local scale index spectra high temperature and high pressure granite deformation and failure acoustic emission local scale index spectra
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部