期刊文献+

Dynamic simulation for tempo-spatial distribution of strain energy density in inhomogeneous stratified crust

Dynamic simulation for tempo-spatial distribution of strain energy density in inhomogeneous stratified crust
下载PDF
导出
摘要 Through simulating the research on dynamic variations of strain energy density (SED) in seismogenic model with hard inclusion, the authors have gained further knowledge to such problems as the process of earthquake preparation, initial rupture, conditions of the initial rupture and fracture propagation direction, etc. Results of the research show that SED (strain energy density) in soft inclusion is very high during the initial period of earthquake preparation. And the increment of SED in the soft area decreases at the later stage of the process. Meanwhile, the increment increases quickly in hard inclusion and in the intersection zone of the inclusion with an erecting fault, where the increment of SED is maximum. Thus, the intersection zone between hard inclusion with larger elastic modulus and erecting fault becomes the place where the initial rupture or earthquake occurs. The fracture in the end part of the hard inclusion spreads along a direction nearly vertical to the erecting fault, so the theoretical fracture direction is consistent with that calculated by digital simulation. Through simulating the research on dynamic variations of strain energy density (SED) in seismogenic model with hard inclusion, the authors have gained further knowledge to such problems as the process of earthquake preparation, initial rupture, conditions of the initial rupture and fracture propagation direction, etc. Results of the research show that SED (strain energy density) in soft inclusion is very high during the initial period of earthquake preparation. And the increment of SED in the soft area decreases at the later stage of the process. Meanwhile, the increment increases quickly in hard inclusion and in the intersection zone of the inclusion with an erecting fault, where the increment of SED is maximum. Thus, the intersection zone between hard inclusion with larger elastic modulus and erecting fault becomes the place where the initial rupture or earthquake occurs. The fracture in the end part of the hard inclusion spreads along a direction nearly vertical to the erecting fault, so the theoretical fracture direction is consistent with that calculated by digital simulation.
出处 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第6期636-645,717,共11页
基金 Key Project(95-04-03-01-03)of(Ninth Five Year Plan(from China Seismological Bureau and Youth Fund in Tianjin Seismological Bureau.
关键词 hard-inclusion seismogenic model hard inclusion soft inclusion energy releasing rate factor of SED rupturing directi? hard-inclusion seismogenic model hard inclusion soft inclusion energy releasing rate factor of SED rupturing direction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部