期刊文献+

A CONSTRAINT QUALIFICATION FOR CONVEX PROGRAMMING 被引量:1

A CONSTRAINT QUALIFICATION FOR CONVEX PROGRAMMING
全文增补中
导出
摘要 This paper derives a new constraint qualification for nondifferential convex programming problem, by using the distance between the feasible set and the perturbed feasible sets. If the feasible sot is bounded, then this constraint qualification is weaker than Stater's constrains qualification. This paper derives a new constraint qualification for nondifferential convex programming problem, by using the distance between the feasible set and the perturbed feasible sets. If the feasible sot is bounded, then this constraint qualification is weaker than Stater's constrains qualification.
作者 李师正
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2000年第4期362-365,共4页 应用数学学报(英文版)
基金 the National Natural Science Foundation of China (No.19671053).
关键词 Constraint qualification convex programmin4 Constraint qualification, convex programmin4
  • 相关文献

参考文献9

  • 1J. P. Penot.A new constraint qualification condition[J]. Journal of Optimization Theory and Applications . 1986 (3)
  • 2Henry Wolkowicz.Geometry of optimality conditions and constraint qualifications: The convex case[J]. Mathematical Programming . 1980 (1)
  • 3F. J. Gould,Jon W. Tolle.Geometry of optimality conditions and constraint qualifications[J]. Mathematical Programming . 1972 (1)
  • 4H. Wolkowicz.Geometry of Optimality Condition and Constraint Qualifications, the Convex Case. Mathematical Programming . 1980
  • 5Li Shizheng.Necessary and Sufficient Conditions for Regularity of Constraints in Convex Programming. Optimization . 1992
  • 6Mangasarian,O.L. Nonlinear programming . 1969
  • 7D.W. Peterson.A Review of Constraint Qualifications in Finite-dimensional Spaces. SIAM Review . 1973
  • 8F.J. Gould,J.W. Tolle.Geometry of Optimality Conditions and Constraint Qualifications. Mathematical Programming . 1972
  • 9J.P. Penot.A New Constraint Qualification Condition. Jounal of Optimization Theory and Applications . 1986

同被引文献7

  • 1Oliver Stein.How to solve a semi-infinite optimization problem[J].European Journal of Operational Research.2012(2)
  • 2Xiaodong Fan,Caozong Cheng,Haijun Wang.Density of stable convex semi-infinite vector optimization problems[J].Operations Research Letters.2011(2)
  • 3M.J. Cánovas,A.L. Dontchev,M.A. López,J. Parra.Isolated calmness of solution mappings in convex semi-infinite optimization[J].Journal of Mathematical Analysis and Applications.2008(2)
  • 4Marco López,Georg Still.Semi-infinite programming[J].European Journal of Operational Research.2006(2)
  • 5Alexander Shapiro.On duality theory of convex semi-infinite programming[J].Optimization.2005(6)
  • 6L. Shizheng.Necessary and sufficient conditions for regularity of constraints in convex programming[J].Optimization.1992(4)
  • 7张长温.半无限规划的正则性[J].应用数学学报,2008,31(2):284-289. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部