期刊文献+

PARTITIONING CIRCULANT GRAPHS INTOISOMORPHIC LINEAR FORESTS

PARTITIONING CIRCULANT GRAPHS INTO ISOMORPHIC LINEAR FORESTS
全文增补中
导出
摘要 It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4. It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1999年第3期321-325,共5页 应用数学学报(英文版)
关键词 ARBORICITY CIRCULANT linear forests Arboricity circulant linear forests
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部