摘要
It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4.
It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4.