摘要
How to select appropriate wolds in a translation is a significant problem in current studies of machine translation, because it directly decides the translation quality. This paper uses an unsupervised corpus-based statisticalmethod to select target word. Based on the concurrence probabilities, all ambiguous words in a sentence are disambiguated at the same time. Because a corpus of limited size cannot cover all the collocation of words, we use an effectivesmoothing method to increase the coverage of the corpus. In ceder to solve the problem in our English-Chinese MT system, we have applied the algorithm to disambiguate senses of verbs, nouns and adjectitves in target language, and theresult shows that the approach is very promising.
How to select appropriate wolds in a translation is a significant problem in current studies of machine translation, because it directly decides the translation quality. This paper uses an unsupervised corpus-based statisticalmethod to select target word. Based on the concurrence probabilities, all ambiguous words in a sentence are disambiguated at the same time. Because a corpus of limited size cannot cover all the collocation of words, we use an effectivesmoothing method to increase the coverage of the corpus. In ceder to solve the problem in our English-Chinese MT system, we have applied the algorithm to disambiguate senses of verbs, nouns and adjectitves in target language, and theresult shows that the approach is very promising.