摘要
研究了一类高维广义非线性薛定谔方程(Schro¨dinger方程)的孤立子解及其性质,得到了非线性参数变化(α→0 及α→∞)时孤立子性态变化规律,同时利用加权差分格式对2维广义非线性Schro¨dinger方程进行了研究,构造了有效的差分格式,得到了该格式稳定性和收敛性的条件,由于对非线性部分进行了适当处理。
Spatial solition solutions of class of generalized nonlinear Schr o ¨dinger equations are discussed analytically and numerically. This achieved using a travelling wave method to formulate one soliton solution and the weihted difference method to the numerical solution. The convergence and the stability have been obtained for the scheme. Numerical results obtained by the scheme are in accordance with that of analytical ones.
出处
《应用基础与工程科学学报》
EI
CSCD
1999年第2期133-138,共6页
Journal of Basic Science and Engineering
基金
国家自然科学基金
山东省自然科学基金