期刊文献+

ON THE THEORY OF RESOLVENTS AND ITS APPLICATIONS 被引量:3

ON THE THEORY OF RESOLVENTS AND ITS APPLICATIONS
原文传递
导出
摘要 We extend the concept of the resolvent of a prime ideal to the concept of theresolvent of a general ideal with respect to a set of parameters and propose an algorithmto construct the generalized resolvents based on Wu-Rits’s zero decomposition algorithm.Our generalized algorithm has the following applications. (1) For a reducible variety V,we can find a direction on which V is projected birationally to an irreducible hypersurface.(2) We give a new algorithm to find a primitive element for a finite algebraic extensionof a field of characteristic zero. (3) We present a complete method of finding parametricequations for algebraic curves. (4) We give a method of solving a system of polynomialequations to any given precision. We extend the concept of the resolvent of a prime ideal to the concept of theresolvent of a general ideal with respect to a set of parameters and propose an algorithmto construct the generalized resolvents based on Wu-Rits's zero decomposition algorithm.Our generalized algorithm has the following applications. (1) For a reducible variety V,we can find a direction on which V is projected birationally to an irreducible hypersurface.(2) We give a new algorithm to find a primitive element for a finite algebraic extensionof a field of characteristic zero. (3) We present a complete method of finding parametricequations for algebraic curves. (4) We give a method of solving a system of polynomialequations to any given precision.
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1999年第S1期17-30,共14页
关键词 RESOLVENTS PARAMETERIZATION of ALGEBRAIC CURVES PRIMITIVE elements polynomial equation solving Wu-Ritt’s decomposition algorithm. Resolvents, parameterization of algebraic curves, primitive elements, polynomial equation solving, Wu-Ritt's decomposition algorithm.
  • 相关文献

同被引文献4

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部