期刊文献+

Forced vibrational power flow input and transmission in a fluid-filled shell

Forced vibrational power flow input and transmission in a fluid-filled shell
原文传递
导出
摘要 The characteristics of vibrational power flow in an infinite elastic cylindrical shell filled with fluid are investigated. The simple harmonic motion of the shell and the pressure field in the contained fluid are described by the Fltigge shell equations and Helmholtz equation respectively. The vibrational equation of this system is obtained by using the coupling of shell and fluid. The dispersion curves are discussed for different circumferential orders. By using Fourier transform and its inverse transform, the input power into this coupled system excited by a simple harmonic linearly distributed driving force is studied. Along the shell, the transmission of the power flow carried by different shell internal forces and by the contained fluid are discussed The characteristics of vibrational power flow in an infinite elastic cylindrical shell filled with fluid are investigated. The simple harmonic motion of the shell and the pressure field in the contained fluid are described by the Fltigge shell equations and Helmholtz equation respectively. The vibrational equation of this system is obtained by using the coupling of shell and fluid. The dispersion curves are discussed for different circumferential orders. By using Fourier transform and its inverse transform, the input power into this coupled system excited by a simple harmonic linearly distributed driving force is studied. Along the shell, the transmission of the power flow carried by different shell internal forces and by the contained fluid are discussed
出处 《Chinese Journal of Acoustics》 1999年第2期152-162,共11页 声学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部