摘要
The primary aim of this paper is to study the chaotic motion of a large deflection plate. Considered here is a buckled plate, which is simply supported and subjected to a lateral harmonic excitation. At first, the partial differential equation governing the transverse vibration of the plate is derived. Then, by means of the Galerkin approach, the partial differential equation is simplified into a set of two ordinary differential equations. It is proved that the double mode model is identical with the single mode model. The Melnikov method is used to give the approximate excitation thresholds for the occurrence of the chaotic vibration. Finally numerical computation is carried out.
The primary aim of this paper is to study the chaotic motion of a large deflection plate. Considered here is a buckled plate, which is simply supported and subjected to a lateral harmonic excitation. At first, the partial differential equation governing the transverse vibration of the plate is derived. Then, by means of the Galerkin approach, the partial differential equation is simplified into a set of two ordinary differential equations. It is proved that the double mode model is identical with the single mode model. The Melnikov method is used to give the approximate excitation thresholds for the occurrence of the chaotic vibration. Finally numerical computation is carried out.