摘要
Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.
Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.