摘要
若G中一条路P的每个内点v 都有dG(v)= 2,则称P为G的简单路⒀一个2 连通可平面图G称为广义多边形路,如果用下述方法得到的图G是路:对应于G的每个内部面f (G是G的平图)有一个G的顶点f,G的两个顶点f和g在G中相邻当且仅当G中相应的两个内部面的边界交于一条G的简单路⒀令j= |E(G)|- |V(G)|和m (G)为G的含圈数⒀论文证明了下述结果:设G是非广义多边形路的2 连通图,则m (G)≥j2+ 5j2 -
A path P in G is called a simple path of G if, for each interior vertex v of P, d G(v)=2. A 2 connected planar graph G is called a generalized polygon path if G * formed by the following method is a path: corresponding to each interior face f of ( is a plane graph of G), there is a vertex f * of G *; two vertices f * and g * are adjacent in G * if and only if the boundaries of the corresponding interior faces of intesect a simple path of 。 Let j=|E(G)|-|V(G)| and m(G) be the number of cycles in G. We prove the following result: Let G be a 2 connected graph being not a generalized polygon path, then m(G)≥j 2+5j2-1.
出处
《上海师范大学学报(自然科学版)》
1999年第3期17-20,共4页
Journal of Shanghai Normal University(Natural Sciences)
关键词
2连通图
广义多边形树
圈数
connected graph
generalized polygon path
cycle