摘要
针对求解线性方程组AX=B(A∈R^(m×n),B∈R^m,X∈R^n)的两种迭代格式:(Ⅰ)X^(K+1)=EX^(K)+H;(Ⅱ)X^(K+1)=GX^(K)+F,给出了递推算法。当矩阵A和B不断增加新数据时,不必按新数据计算(Ⅰ)和(Ⅱ)中的相应矩阵,而是在新旧矩阵间建立了递推关系,减少了计算量和计算机内存。
Gives a recurrence algorism for solving iteration form of the linear equations: AX=B(A∈R^(m×n), B∈R^m, X∈R^n). When matrices A and B increase new data, establishes recurrence relationships between new and old matrices, reduces calculations and computer memory.
出处
《大连铁道学院学报》
1993年第4期14-17,共4页
Journal of Dalian Railway Institute
关键词
线性方程
迭代法
收敛
递推算法
linear equations
iteration methods
convergence/recurrence algorism