期刊文献+

Mechanical Properties of Si and Some d-electron Metals:Force Laws, Electron Correlation and Bond-breaking

Mechanical Properties of Si and Some d-electron Metals:Force Laws, Electron Correlation and Bond-breaking
下载PDF
导出
摘要 The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field is already fitted to density functional results. The relation to bond-breaking and electron correlation will be emphasized. Finnis-Sinclair-type many-body potentialshave then been used to treat some d-electron metals. In particular, results for cleavage forcein bcc Fe will be presented, and also some calculations as two perfectly planar Fe surfaces arerubbed together' at different interplanar separations. Finally, lattice dynamical models for thesteady-state propagation of a screw dislocation, and then of a crack, will be used, again within abond-breaking type of force field. For the screw dislocation propagation. a solitary wave equationis shown to follow in the 'almost continuum' limit. Energy radiated by phonons as the dislocationmoves can thereby be calculated. The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field is already fitted to density functional results. The relation to bond-breaking and electron correlation will be emphasized. Finnis-Sinclair-type many-body potentialshave then been used to treat some d-electron metals. In particular, results for cleavage forcein bcc Fe will be presented, and also some calculations as two perfectly planar Fe surfaces arerubbed together' at different interplanar separations. Finally, lattice dynamical models for thesteady-state propagation of a screw dislocation, and then of a crack, will be used, again within abond-breaking type of force field. For the screw dislocation propagation. a solitary wave equationis shown to follow in the 'almost continuum' limit. Energy radiated by phonons as the dislocationmoves can thereby be calculated.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第4期289-295,共7页 材料科学技术(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部