期刊文献+

平面图与面的并区域

On the plane graph of d(f) =i and union of face
下载PDF
导出
摘要 Sachs,Kozyrev和Grinbery指出平面图具有Hamilton圈的一个必要条件是2,其中φi和φ'i分别为Hamilton圈内、外应为i的面数.本文探讨面的度相等的平面图的面数,面并成顶点在边界上的连通区域与Hamilton圈. Sacns, Kozyrev and Grinbery proposed a necessary condition for a plane graph with a Hamilton cycle as follows (i- 2) (φi -φ'i ) = 0where φi and φ'i are the numbers of planes with i aegrees inside and outside of Hamilton cycle respectively. In this peper, we try to study the union of face with plane graph and Hamilton cycle.
作者 陈婵
出处 《杭州教育学院学报》 CAS 1999年第6期13-15,共3页 JOURNAL OF HANGZHOU EDUCATIONAL INSTITUTE
关键词 面数 面的并区域 HAMILTON圈 Union of face, Hamilton cycle
  • 引文网络
  • 相关文献
;
使用帮助 返回顶部