期刊文献+

睡眠脑电的自回归模型阶数特性 被引量:4

Autoregressive Model Order Property for Sleep EEG
下载PDF
导出
摘要 传统睡眠脑电 (Sleep EEG)研究从信号的时域和频域的特征分析睡眠过程 ,通常根据功率谱观察信号中特定节律的出现和频带的分布。而功率谱估计中基于参数模型的方法得到广泛应用 ,但建模时通常只能根据经验选择一个固定较低的阶数。本文讨论了自回归模型阶数 (Autoregressive m odel order,ARMO)估计准则的一些最新进展 ,并且统计了一段睡眠过程中 EEG的阶数分布。结果显示 EEG的 ARMO分布集中在差别很大的几个区间 ,可以用来表示睡眠 EEG分期内微结构和过渡过程 ,并在一定程度上提供 Traditional sleep scoring system describes the sleep EEG characterized by features in time domain as well as frequency domain. Power Spectral Density (PSD) is one of the well-used methods to observe the occurrence of specified rhythms. However, the parameter model based PSD estimation is used with the assumption that the model order is determined as low as possible through prior knowledge. This paper briefs the development of Autoregressive Model Order (ARMO) criterion, and provides the distribution of ARMOs for specified sleep EEG, which shows that ARMOs concentrate on several well separated regions that are indicative of the microstructure and transition states. This study suggests the promising perspective of ARMO as a special EEG feature for weighing complexity, randomness and rhythm components.
出处 《生物医学工程学杂志》 EI CAS CSCD 2004年第3期394-396,共3页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 ( 60 0 710 2 3 )
关键词 睡眠脑电 自回归模型 阶数特性 AR模型 功率谱 时域 频域 AR models Sleep EEG Order selection Power spectral estimation
  • 相关文献

参考文献7

  • 1[1]Kay SM,Marple SL.Spectrum analysis-a modern perspective.Proc IEEE,1981;69:1380
  • 2[2]Djuric PM,Kay SM.Order selection of autoregressive models.IEEE Trans Signal Processing,1992;40(11):2829
  • 3[3]Broersen PMT,Wensink HE.Autoregressive model selection by a finite sample estimator for the Kullback-Leibler discrepancy.IEEE Trans Signal Processing,1998;46(7):2058
  • 4[4]Rezek IA,Roberts SJ.Stochastic complexity measures for physiological signal analysis.IEEE Trans BME,1998;45(9):1186
  • 5[5]Broesen PMT.Facts and fiction in spectral analysis.IEEE Trans Instrumentation Measurement,2000;49(4): 766
  • 6[6]Burg JP.Maximum likelihood spectral analysis.Proc 37th Meeting Soc of Exploration Geophysicists,Oklahoma,USA,1967;6:1
  • 7[7]Rechtschaffen A,Kales A.A manual of standardized terminology,techniques and scoring system for sleep stages of human subjects.Brain Information Service/Brain Research Institute,UCLA,1968

同被引文献21

  • 1刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 2罗园园,许百华.认知性警戒作业绩效与刺激率、记忆负荷的关系[J].人类工效学,2006,12(1):49-50. 被引量:6
  • 3江朝晖,高翠云,冯焕清.脑电近似熵分析的思维分类识别[J].应用科学学报,2006,24(4):359-362. 被引量:4
  • 4Mallat S. Theory for Multi - resolution Signal Decomposition: The Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7):674 - 693.
  • 5MALLAT S. Theory formuhi-resolution signal decomposition: The wavelet representation [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989, 11 (7) :674-693.
  • 6Johnston James D. Transform Coding of Audio Signals Using Perceptual Noised Criteria. IEEE Select Ares Commun, 1988, 6(2) : 314 -323.
  • 7J Rajan, P Rayner. Generalized feature extraction for timevarying autoregressive models. IEEE Transactions on Signal Processing, 1996, 44(10): 2497 -2507.
  • 8Yuanjin Zheng, David BHT, Zhiping Lin. Modeling general distributed nonstationary process and identifying timevarying autoregressive system by wavelets: theory and application. Signal Processing, 2001,81(9) : 1823 - 1848.
  • 9J P Kaipio, P A Karjalainen. Estimation of event-relate dsynchronization changes by a new TVAR method. IEEE Trans on Biomedical Engineering, 1997, 44 ( 8 ) : 649 -656.
  • 10M K Tsatsanis, G B Giannakis. Time-varying system identification and model validation using wavelets. IEEE Transactions on Signal Processing, 1993,44(12) : 3512 -3523.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部