摘要
羧甲基壳聚糖作为一种高分子材料 ,具有良好的组织相容性和生物可降解性。本实验试图利用羧甲基壳聚糖作为植入环丙沙星微球的缓释辅料 ,并探索这一剂型的制备工艺、结构形态和体外释药特性。首先我们采用乳化交联技术制备微球 ;然后用扫描电子显微镜、红外光谱、及示差热分析等方法研究微球的结构和形态 ;建立体外持续流动释放系统初步检测微球的体外释放特性。实验结果发现 :微球的结构和形态受制备工艺条件如温度、离子强度、搅拌速度等因素的影响 ;一定工艺条件下制备的环丙沙星微球的体外释放时间可达 7d以上 ,释放行为符合 Higuchi方程。因此 ,我们认为 :羧甲基壳聚糖可作为环丙沙星可降解植入微球的缓释辅料 ;乳化交联技术是制备这一微球的有效方法 ,工艺简单。
As a kind of biomaterial, carboxymethyl chitosan(CMC) has excellent biodegradable and bioacceptable capabilities using. This study was aimed to probe into the feasibility of CMC to prepare the implantable sustained release Ciprofloxacin Hydrochloride (CPX) microspheres(MS), and to go further into the pharmaceutic technology, the morphology and the characteristics of in vitro release of the microspheres. First, we prepared the microspheres by emulsification and cross-linking technology. Then, scanning electron microscopy (SEM), infrared spectrum (IR) and differential thermal analysis (DTA) were used to detect the structure and morphology of the MS. The in vitro release of CPX/CMC-MS and the CPX content of the MS were detected through continuous-flow releasing system. We found that the structure and morphology of the MS were affected by the conditions of preparation such as emulsification and cross-linking temperature, ionic strength and stirring speed, that the releasing time of CPX was more than 7 days, and that the releasing behaviors of the microspheres conformed to the Higuchi model. So we drew the conclusions that CMC could be used as a kind of absorbable and implantable adjuvant for sustained release, the technology of emulsification and cross-linking was proved to be feasible, stable and simple.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
2004年第3期350-354,共5页
Journal of Biomedical Engineering
基金
国家科技部"技术创新基金"资助 ( 99C2 62 13 10 0 42 8)