期刊文献+

Computation of generalized real radicals of polynomial ideals

Computation of generalized real radicals of polynomial ideals
原文传递
导出
摘要 For an ordered field (K,T) and an idealI of the polynomial ring $K\left[ {x_1 , \cdots ,x_n } \right]$ , the construction of the generalized real radical $^{\left( {T,U,W} \right)} \sqrt I $ ofI is investigated. When (K,T) satisfies some computational requirements, a method of computing $^{\left( {T,U,W} \right)} \sqrt I $ is presented. For an ordered field (K, T) and an ideal I of the polynomial ring K [x<sub>1</sub>, …, x<sub>n</sub>], the construction of the generalized real radical I<sup>(</sup>1/(T,U,W) of I is investigated. When (K, T) satisfies some computational requirements, a method of computing I<sup>(</sup>1/(T,U,W) is presented.
作者 曾广兴
出处 《Science China Mathematics》 SCIE 1999年第3期272-280,共9页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 19661002) the Climbing Project
关键词 computational ALGEBRAIC geometry POLYNOMIAL IDEAL generalized REAL RADICAL ( T U W)-radical ideal. computational algebraic geometry polynomial ideal generalized real radical (T,U,W)-radical ideal
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部