摘要
基于人工神经网络理论,提出了一种新型的利用边界判决实现分类的方法.该方法不需要被判边界的显式数学模型,而是通过对所提供的样本实例数据进行学习训练,提取出无法用数学模型表达的实际分类规则.并将其用于二维平面的边界划分中,仿真结果表明了该方法的有效性.
Based on the theory of Artificral Neural Networks, a new method, in which boundary judgment is used to realize classification, is presente. In this method, no obvious mathematical model is needed. Trained with the given sample data, the actual classification rules, Which even can't be expressed with mathematical model, can be obtained. The results of simulation in two-dimension spacc have showed the high validity of this method.
出处
《上海电力学院学报》
CAS
1998年第1期42-48,共7页
Journal of Shanghai University of Electric Power
关键词
人工神经网络
神经元
网络层
联接权重
边界判决
分类
学习训练
Artificial Neural Networks
neural unit
network loyer
synaptic weight
boundary judgment
classification
training