期刊文献+

半流及其逆极限的混沌

Chaos in the Semi-Flows and its Inverse Limit systems
下载PDF
导出
摘要 该文对连续动力系统研究了Devaney意义下的混沌的不变性质.证明了:(1)半流是混沌的(resP,ω混沌的)当且仅当它的逆极限是混沌的(resp,ω混沌的);(2)自映射是混沌的(resp.ω混沌的)当且仅当它的扭扩半流是混沌的(resp.ω混沌的);(3)自映射逆极限的扭扩流拓扑共轭于其扭扩半流的逆极限.从(2)和(3)可知,结论(1)是对自映射的推广. in this paper,we study the invariants of the chaos in the sense of Devaney for continuous dynamical systems. The followings is proved: (1 ) a semi-flow is chaotic (resp. ω- chaotic) iff inverse limit system of it is chaotic (resp. ω-chaotic); (2) a continuous mcap is chaotic (resp. ω-chaotic) iff suspension semi-flow of it is chaotic (resp. ω-chaotic); (3) suspension flow of inverse limit system of a continuous map is conjugate to inverse limit system of suspension semi-flow of it. It follows from (2) and (3)that (1) is a generalizafion of those obtained for discrete dynamical systems in [4].
出处 《数学物理学报(A辑)》 CSCD 北大核心 1997年第S1期46-51,共6页 Acta Mathematica Scientia
基金 国家自然科学基金
关键词 半流 逆极限 Devaney意义下的混沌 ω混沌 扭扩半流 Semi-flows, inverse limit systems,chaos,ω-chaos, suspenion semi-flows
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部