摘要
该文对连续动力系统研究了Devaney意义下的混沌的不变性质.证明了:(1)半流是混沌的(resP,ω混沌的)当且仅当它的逆极限是混沌的(resp,ω混沌的);(2)自映射是混沌的(resp.ω混沌的)当且仅当它的扭扩半流是混沌的(resp.ω混沌的);(3)自映射逆极限的扭扩流拓扑共轭于其扭扩半流的逆极限.从(2)和(3)可知,结论(1)是对自映射的推广.
in this paper,we study the invariants of the chaos in the sense of Devaney for continuous dynamical systems. The followings is proved: (1 ) a semi-flow is chaotic (resp. ω- chaotic) iff inverse limit system of it is chaotic (resp. ω-chaotic); (2) a continuous mcap is chaotic (resp. ω-chaotic) iff suspension semi-flow of it is chaotic (resp. ω-chaotic); (3) suspension flow of inverse limit system of a continuous map is conjugate to inverse limit system of suspension semi-flow of it. It follows from (2) and (3)that (1) is a generalizafion of those obtained for discrete dynamical systems in [4].
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第S1期46-51,共6页
Acta Mathematica Scientia
基金
国家自然科学基金