期刊文献+

T-CELL RECEPTOR GENE REARRANGEMENT ANALYSIS IN THE PRIMARY CUTANEOUS T-CELL LYMPHOMA

T CELL RECEPTOR GENE REARRANGEMENT ANALYSIS IN THE PRIMARY CUTANEOUS T CELL LYMPHOMA
下载PDF
导出
摘要 Object: The present paper is to evaluate the significance of T cell receptor (TCR) gene rearrange ments in primary cutaneous T cell lymphomas (PCTCL) as detected by analysis of Southern Blot (SBA) and polymerase chain reaction (PCR). Patients and Methods: Skin specimens and peripheral blood samples were taken from 44 patients with PCTCL, including 30 patients with mycosis fungoides (MF), 2 patients with Sezary's syndrome (SS), and 12 patients with PCTCL other than MF and SS (PNCTCL). 11 patients with a presumptive diagnosis of MF, 23 patients with lymphoproliferative dermatoses including lymphomatoid papulosis (LyP) and 8 patients with benign cutaneous lymphoid infiltrates were simultaneously studied by the amplification of junctional V (variable) J (joining) sequences of the rearranged TCRγ genes by PCR(TCRγPCR) and the analysis of TCRb chain genes by SBA(TCRβSBA) for detection of clonal gene rearrangements (GR). One lymph node specimen of a case with MF IIA was also detected by TCRγ PCR and TCRβSBA. Results: In MF, GR were detected by TCRγPCR and TCRβSBAb in 83.3 85.7% and 66.7% 71.4% of skin specimens of cases IIA IIB and in 57.1% 70.0% and 14.3% 10.0% of those of cases IA IB, respectively. GR were seen in 66.7% 71.4% and 33.3% 43.0.% of blood samples of cases IIA IIB, and 42.9% 40.0% and 0 10.0% of those of cases IA IB, respectively. GR was confirmed by TCRγ PCR and TCRβSBA in one lymph node showing dermato pathic lymphadenopathy of a case with MF IIA. In 11 patients of clinically suspected MF, GR were present in skin specimens of 5 cases (45.4%) and in blood samples of 3 cases ( 27.3% ) by TCRγ PCR. In PNCTCL, GR were found in 9 skin specimens (90.0%) from 10 patients detected by TCRγ PCR and in 6 skin specimens (75.0%) from 8 patients detected by TCRβSBA. GR were also seen in 6 blood samples (72.8%) from 11 patients detected by TCRγ PCR, and in 7 blood samples (70.0%) from 10 patients by TCRβSBA. In SS and LyP, GR were detected by TCRγ PCR and TCRβSBA in each of the two skin specimens of two cases with LyP and in each of the two blood samples of two cases with SS. GR were seen in one skin specimen of one case with SS and one blood sample of one case with LyP detected by TCRγPCR. Conclusions: This study demonstrated that TCRγ PCR is a rapid, more sensitive tool than TCRβSBA, can be used in the analysis of T cell clonality in skin, lymph node and blood samples of patients with PCTCL and indicated that this method forms a useful supplement to other methods for diagnosis of early and suspected MF, confirmation of PNCTCL and determination of extracutaneous involvement of lymph node and blood. Object: The present paper is to evaluate the significance of T cell receptor (TCR) gene rearrange ments in primary cutaneous T cell lymphomas (PCTCL) as detected by analysis of Southern Blot (SBA) and polymerase chain reaction (PCR). Patients and Methods: Skin specimens and peripheral blood samples were taken from 44 patients with PCTCL, including 30 patients with mycosis fungoides (MF), 2 patients with Sezary's syndrome (SS), and 12 patients with PCTCL other than MF and SS (PNCTCL). 11 patients with a presumptive diagnosis of MF, 23 patients with lymphoproliferative dermatoses including lymphomatoid papulosis (LyP) and 8 patients with benign cutaneous lymphoid infiltrates were simultaneously studied by the amplification of junctional V (variable) J (joining) sequences of the rearranged TCRγ genes by PCR(TCRγPCR) and the analysis of TCRb chain genes by SBA(TCRβSBA) for detection of clonal gene rearrangements (GR). One lymph node specimen of a case with MF IIA was also detected by TCRγ PCR and TCRβSBA. Results: In MF, GR were detected by TCRγPCR and TCRβSBAb in 83.3 85.7% and 66.7% 71.4% of skin specimens of cases IIA IIB and in 57.1% 70.0% and 14.3% 10.0% of those of cases IA IB, respectively. GR were seen in 66.7% 71.4% and 33.3% 43.0.% of blood samples of cases IIA IIB, and 42.9% 40.0% and 0 10.0% of those of cases IA IB, respectively. GR was confirmed by TCRγ PCR and TCRβSBA in one lymph node showing dermato pathic lymphadenopathy of a case with MF IIA. In 11 patients of clinically suspected MF, GR were present in skin specimens of 5 cases (45.4%) and in blood samples of 3 cases ( 27.3% ) by TCRγ PCR. In PNCTCL, GR were found in 9 skin specimens (90.0%) from 10 patients detected by TCRγ PCR and in 6 skin specimens (75.0%) from 8 patients detected by TCRβSBA. GR were also seen in 6 blood samples (72.8%) from 11 patients detected by TCRγ PCR, and in 7 blood samples (70.0%) from 10 patients by TCRβSBA. In SS and LyP, GR were detected by TCRγ PCR and TCRβSBA in each of the two skin specimens of two cases with LyP and in each of the two blood samples of two cases with SS. GR were seen in one skin specimen of one case with SS and one blood sample of one case with LyP detected by TCRγPCR. Conclusions: This study demonstrated that TCRγ PCR is a rapid, more sensitive tool than TCRβSBA, can be used in the analysis of T cell clonality in skin, lymph node and blood samples of patients with PCTCL and indicated that this method forms a useful supplement to other methods for diagnosis of early and suspected MF, confirmation of PNCTCL and determination of extracutaneous involvement of lymph node and blood.
出处 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1997年第3期53-58,共6页 中国癌症研究(英文版)
关键词 Primary cutaneous T cell lymphoma PCR T cell receptor Gene rearrangement. Primary cutaneous T cell lymphoma, PCR, T cell receptor, Gene rearrangement.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部