期刊文献+

THE FACTORS AFFECTING ENTROPY OF MIXING OF LIQUID ALLOY SYSTEMS

THE FACTORS AFFECTING ENTROPY OF MIXING OF LIQUID ALLOY SYSTEMS
下载PDF
导出
摘要 A modified Miedema model using four atomic parameters and pattern recognition or artificial neural network has been used to study the factors that affect the entropy of mixing of liquid binary alloy systems. It has been found that the systems with larger electronegativity difference (△Φ) usuallg have negative △Sxs of mixing, while the systems with larger valence electron density difference(denoted by △n) and small △Φ usually have positive △Sxs of mixing. The artificial neural network-atomic parameter method can be used to predict the △Sxs of binary alloy systems consisting of non-transition elements. A modified Miedema model using four atomic parameters and pattern recognition or artificial neural network has been used to study the factors that affect the entropy of mixing of liquid binary alloy systems. It has been found that the systems with larger electronegativity difference (△Φ) usuallg have negative △Sxs of mixing, while the systems with larger valence electron density difference(denoted by △n) and small △Φ usually have positive △Sxs of mixing. The artificial neural network-atomic parameter method can be used to predict the △Sxs of binary alloy systems consisting of non-transition elements.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第2期127-130,共4页 金属学报(英文版)
关键词 entropy of mixing liquid alloy system artificial neural network entropy of mixing, liquid alloy system, artificial neural network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部