摘要
将A.F.Beardon在平面Mbius群中的两个定理推广到了n维空间,得到了;(1)若有一公共不动点0或∞,则tr[f,g]=2的充要条件是aα=αa.(2)若f是严格抛物元素,<f,g>是非初等离散群,则及当g也是严格抛物元素时有,其中x∈Hn+1.
In this paper we have obtained the generalizations of two Beardon's theorems. We have proved the following main results: (1) if f= and in SL(2, Γn) have a common fixed point 0 or ∞, then tr[f, g] = 2 if and only if aα=αa, (2) If f is uniformly parabolic, (f, g) is a non-elementary discrete group, then and if g is also uniformly parabolic, thensinh sinh all x in Hn+1
出处
《云南民族大学学报(自然科学版)》
CAS
1996年第2期1-5,共5页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金