摘要
1995年高考压轴题提供了反演变换的一种推广,即将通常的反演变换中的基圆(半径为r)推广到椭圆(称为“反演椭圆”),且当P、Q为反演点时,反演幂由k=OP·PQ=r^2推广到|OP|·|OQ|=|OR|~2(R为P、Q联线与椭圆的交点),称这种变换为“椭圆反演”(简称“反演”)。下面介绍这种“反演”的一些规律,供大家参考。 设椭圆b^2x^2+a^2y^2=a^2b^2中心O为“反演”中心,射线OP与椭圆交于点R,设P关于椭圆的“反演”点为Q,且P、Q、R的坐标分别为(x_P,y_P),(x,y),(x_R,y_R),∠POx=o。