摘要
This paper deals with the numerical solution of initial value problems for pantograph differential equations with variable delays. We investigate the stability of one leg θ-methods in the numerical solution of these problems. Sufficient conditions for the asymptotic stability of θ-methods are given by Fourier analysis and Ergodic theory.
This paper deals with the numerical solution of initial value problems for pantograph differential equations with variable delays. We investigate the stability of one leg θ-methods in the numerical solution of these problems. Sufficient conditions for the asymptotic stability of θ-methods are given by Fourier analysis and Ergodic theory.