摘要
The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber.
The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber.
基金
Supported by Foundation of Electronic Science Institute,Ministry of Electronic Industry