摘要
Based on the Bohai ocean environment characteristics, a new platform vibration distribution structure is designed to reduce the platform vibration due to flowing ice. The effect of the earthquake wave and ocean wave load on this vibration distribution structure is considered in the design. The principal idea of this new vibration distribution structure is dividing the platform main column into the inner tube and the outer tube. The outer tube is connected with the leg pontoon by braces, while the inner tube is used to support the platform deck. The inner tube and outer tube can be connected or disconneted in the region near the water line. For evaluating the vibration reduction effect of such a structure, tests are carried out on a steel model, and the external load of flowing ice, earthquake wave and ocean wave are simulated by concentated random load applied to different points of the model. The tests are performed in water media and air media respectively. The vibration reduction effect is evaluated by the transfer function of the vibration response at the measured points, and is presented by a dimensionless function dependent on the frequency. Test results show that this new vibration structure has an excellent vibration reduction effect.
Based on the Bohai ocean environment characteristics, a new platform vibration distribution structure is designed to reduce the platform vibration due to flowing ice. The effect of the earthquake wave and ocean wave load on this vibration distribution structure is considered in the design. The principal idea of this new vibration distribution structure is dividing the platform main column into the inner tube and the outer tube. The outer tube is connected with the leg pontoon by braces, while the inner tube is used to support the platform deck. The inner tube and outer tube can be connected or disconneted in the region near the water line. For evaluating the vibration reduction effect of such a structure, tests are carried out on a steel model, and the external load of flowing ice, earthquake wave and ocean wave are simulated by concentated random load applied to different points of the model. The tests are performed in water media and air media respectively. The vibration reduction effect is evaluated by the transfer function of the vibration response at the measured points, and is presented by a dimensionless function dependent on the frequency. Test results show that this new vibration structure has an excellent vibration reduction effect.