期刊文献+

ON HYDRODYNAMIC INSTABILITIES,CHAOS AND PHASE TRANSITION 被引量:9

ON HYDRODYNAMIC INSTABILITIES,CHAOS AND PHASE TRANSITION
下载PDF
导出
摘要 Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition. Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第1期1-14,共14页 力学学报(英文版)
关键词 ELLIPTICITY hydrodynamic instabilities CHAOS phase transition ellipticity hydrodynamic instabilities chaos phase transition
  • 相关文献

参考文献17

  • 1谢定裕.ELEMENTAL MECHANISMS OF HYDRODYNAMIC INSTABILITIES[J].Acta Mechanica Sinica,1994,10(3):193-202. 被引量:3
  • 2Haitao Fan.A limiting “viscosity” approach to the Riemann problem for materials exhibiting a change of phase(II)[J]. Archive for Rational Mechanics and Analysis . 1992 (4)
  • 3M. Slemrod.A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase[J]. Archive for Rational Mechanics and Analysis . 1989 (4)
  • 4M. Slemrod.Admissibility criteria for propagating phase boundaries in a van der Waals fluid[J]. Archive for Rational Mechanics and Analysis . 1983 (4)
  • 5Tang,SQ. Dissipative nonlinear evolution equations and chaos . 1995
  • 6Hsieh,DY,Wei-zang,Chien.Ill-posed problems, instability and chaos. Proc 2nd Int Conf on Nonlinear Mechanics, Beijing, China August 23–26, 1993 . 1993
  • 7Keefe L R.Dynamics of perturbed waretrain solutions the Ginzhurg-Landau equation. Studies in Applied Mathematics . 1985
  • 8Hsieh D Y.On partial differential equations related to Lorenz system. Journal of Mathematical Physics . 1987
  • 9Kuramoto Y,Tsuzuki T.On the formation of dissipative structures in reaction_diffusion systems. Progress of Theoretical Physics . 1975
  • 10Hsiao,L,Jian,H. Global smooth solutions to the spatially periodic cauchy problem for dissipative nonlinear evolution equations . 1995

共引文献2

同被引文献32

  • 1谢定裕.ELEMENTAL MECHANISMS OF HYDRODYNAMIC INSTABILITIES[J].Acta Mechanica Sinica,1994,10(3):193-202. 被引量:3
  • 2戴正德,林国广.关于耗散Zakharov系统吸引子一文的注记[J].云南大学学报(自然科学版),1993,15(3):214-221. 被引量:2
  • 3王平,唐少强.松弛模型中的液气共存平衡态[J].应用数学和力学,2005,26(6):707-713. 被引量:2
  • 4王平,唐少强.LIQUID-GAS COEXISTENCE EQUILIBRIUM IN A RELAXATION MODEL[J].Applied Mathematics and Mechanics(English Edition),2005,26(6):767-773. 被引量:1
  • 5HSIEH Din-yu, WANG Xiao-ping. Phase transition in Van der Waals fluid[ J ]. SL4M Journal on Applied Mathematics, 1997,57(4) :871-892.
  • 6Slemrod M. Dynamic phase transitions in a Van der Waals fluid[ J ]. Differential Equations, 1984,52: 1-23.
  • 7Zumbrun K. Dynamical stability of phase transitions in the p-system with viscosity-capillarity[J]. SIAM Journal on Applied Mathematics ,2000,60(6): 1913-1924.
  • 8FffeP, WANG Xiao-ping. Periodic structures in aVan der Waals system[J] .ProRoySoc Edinburgh Sect A, 1998,128:235-250.
  • 9HE Chang-hong, WANG Xiao-ping. Symmetric solutions for a two dimensional Van der Waals system[D].Mphil Thesis. Math Dept HKUST, 1998.
  • 10FAN Hai-tao. Traveling waves, Riemann problems and computations of the dynamics of liquid/vapor phase transitions[ J]. Differential Equations, 1998, 150: 385-437.

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部