摘要
本文首先提出非线性规划的拟Kuhn—Tucker点和拟罚函数法的概念和思想,然后结合强次可行方向法思想给出问题的两个新型算法,称之为拟罚函数—强次可行方向法.证明了该算法收敛到原问题的拟Kuhn—Tucker点.
The new concept and idea of quasi-Kuhn-Tucker point and quasi-Penalty function method are put forward in this paper,then two new algorithms are presented by combining the idea of strongly subfeasible directions method,they are called quasi-Penalty functionstrongly sub feasible directions methods.TIt two algotithm are proved to converge to the primal problem's quasi-kuhn-Tucker point.
出处
《经济数学》
1996年第1期71-78,共8页
Journal of Quantitative Economics
基金
广西自治区青年科学基金
广西教委科学基金
关键词
非线性规划
拟Kuhn—Tucker点
拟罚函数法
强次可行方向法
收敛性
Nonlinear programming,quasi-Kuhn-Tucker point,quasi-Penalty function method,strongly sub feasible directions method,convergence.