摘要
经典实函数理论指出:R1的一个子集合,要成为某个R1上实函数之不连续点的全体,当且仅当该集合为R1上可数个闭集的并。本文将给出进一步精细的刻画:考虑相对连续性,即指定R1的子集合A,及实函数f,对于A之导集A'中一点x0,考察f(x)是否存在,及极限是否等于f(x0),具体地,有着下述结果。设E为可数个闭集的并,R分为3个子集的不交并:R1=(E∩E')∪(E-E')∪(R-E)。那么存在R1上的有界实函数,使得1:f之不连续点的全体恰为E(与经典结果一致),2:当时,f(x)不存在,3:当时,不存在。
The concept of relative discoatinuity everywhere was given, and the main theorem was stated: on real line R if E is the countable union of closed subsets,then there exists a real valued function on R which is continuous at every point of E ̄C, and is discontinuous everywhere relative to E(E ̄C) on E' ∩ E(E'- E respectively).
出处
《宁波大学学报(理工版)》
CAS
1996年第2期9-12,共4页
Journal of Ningbo University:Natural Science and Engineering Edition
关键词
实函数
处处不连续
康托集
real-valued function relative discontinuity Cantor set