期刊文献+

Microearthquake analysis for hydraulic frac-turing proces

Microearthquake analysis for hydraulic fracturing process
下载PDF
导出
摘要 The hydraulic fracture technique is widely applied in the enhancement of petroleum and natural gas productions and in the development of geothermal energy. This technique is also used to create an underground fracture zone system for disposal of solid and liquid wastes. This is the most recent development in the application of industrial techniques to environmental protection scientific problems. Knowledge of mechanical properties and geometrical parameters of a hydraulic fracture zone is important for both energy resource development and safe disposal of waste. Hydraulic fracturing often induces many microearthquakes.Analysis of the spatial temporal distribution of the induced seismicity yields the geometry of a hydraulic fracture zone, and kinetic and dynamic parameters associated with the fracture growth process. Applying a waveform correlation analysis and a space time grid search method, we precisely determined hypocentral locations for 157 microearthquakes induced by hydraulic fracturing. Spatial distribution of the induced seismicity celarly shows the dimension and orientation of a hydraulic fracture zone. Variation of the seismicity distribution in time and space was used to infer the growth rate and direction of the fracture zone. An empirical Greens function(EGF) method was applied to earthquake doublets to retrieve relative source time functions(RSTFs) and to estimate source parameters, such as seismic moment, source radius, and stress drop, for larger microearthquakes. Azimuthal variation of the RSTF of a master event indicates that the source ruptured to the northwest, which aggrees with the fracture zone growth direction. Large variation of stress drops for these induced earthquakes reflects the significant heterogeneity of mechanical properties in the hydraulic fracture zone. The hydraulic fracture technique is widely applied in the enhancement of petroleum and natural gas productions and in the development of geothermal energy. This technique is also used to create an underground fracture zone system for disposal of solid and liquid wastes. This is the most recent development in the application of industrial techniques to environmental protection scientific problems. Knowledge of mechanical properties and geometrical parameters of a hydraulic fracture zone is important for both energy resource development and safe disposal of waste. Hydraulic fracturing often induces many microearthquakes.Analysis of the spatial temporal distribution of the induced seismicity yields the geometry of a hydraulic fracture zone, and kinetic and dynamic parameters associated with the fracture growth process. Applying a waveform correlation analysis and a space time grid search method, we precisely determined hypocentral locations for 157 microearthquakes induced by hydraulic fracturing. Spatial distribution of the induced seismicity celarly shows the dimension and orientation of a hydraulic fracture zone. Variation of the seismicity distribution in time and space was used to infer the growth rate and direction of the fracture zone. An empirical Greens function(EGF) method was applied to earthquake doublets to retrieve relative source time functions(RSTFs) and to estimate source parameters, such as seismic moment, source radius, and stress drop, for larger microearthquakes. Azimuthal variation of the RSTF of a master event indicates that the source ruptured to the northwest, which aggrees with the fracture zone growth direction. Large variation of stress drops for these induced earthquakes reflects the significant heterogeneity of mechanical properties in the hydraulic fracture zone.
作者 李应平
出处 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第3期19-29,共11页
关键词 hydraulic fracture zone waveform correlation earthquake location fracture dimension and growth rate empirical Greens function source parameters. hydraulic fracture zone, waveform correlation, earthquake location, fracture dimension and growth rate, empirical Greens function, source parameters.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部