摘要
For the EOF decomposition continuation phase space, the least square method is applied under the condition of orthogonal basis to find coefficients of all quadratic nonlinear terms of a state evo- lution equation such that a dynamic system that indicates the evolution features of a weather/cli- mate system in a limited area can be formulated. The scheme is compared with that for phase space continuation by time series drift. Results show that the dynamic system established in terms of the present method is likely to give more precise and realistic description of evolution of the weather/ climate system.
For the EOF decomposition continuation phase space, the least square method is applied under the condition of orthogonal basis to find coefficients of all quadratic nonlinear terms of a state evo- lution equation such that a dynamic system that indicates the evolution features of a weather/cli- mate system in a limited area can be formulated. The scheme is compared with that for phase space continuation by time series drift. Results show that the dynamic system established in terms of the present method is likely to give more precise and realistic description of evolution of the weather/ climate system.
基金
This work is sponsored by the National Natural Science Foundation of China
the Natural Science Foundation of Jiangsu Province