期刊文献+

Relativistic Effects in the Global Positioning System

Relativistic Effects in the Global Positioning System
下载PDF
导出
摘要 The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation. The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第4期199-237,共39页 系统工程与电子技术(英文版)
基金 This work was supported in pert by NIST Contract No. 40RANB9B8112.
关键词 RELATIVITY Global positioning system Sagnac effect Synchronization. Relativity, Global positioning system, Sagnac effect, Synchronization.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部