期刊文献+

NONTRIVIAL SOLUTIONS OF COMPETITIVE-DIFFUSIVE SYSTEMS WITH SMALL DIFFUSION

NONTRIVIAL SOLUTIONS OF COMPETITIVE-DIFFUSIVE SYSTEMS WITH SMALL DIFFUSION
下载PDF
导出
摘要 We discuss nontrivial steady-state solutions of a competitive-diffusive systems with small diffusion in which two interacting species u and v inhibit the same bounded region. By using methods of bifurcation theory and indefinite weight function, we prove the existence and uniqueness of solutions which are positive in both u and v and asymptotically stable corresponding to the case where the populations can co-exist. We discuss nontrivial steady-state solutions of a competitive-diffusive systems with small diffusion in which two interacting species u and v inhibit the same bounded region. By using methods of bifurcation theory and indefinite weight function, we prove the existence and uniqueness of solutions which are positive in both u and v and asymptotically stable corresponding to the case where the populations can co-exist.
作者 李大华
出处 《Acta Mathematica Scientia》 SCIE CSCD 1995年第3期295-302,共8页 数学物理学报(B辑英文版)
关键词 competitive-diffusive system BIFURCATION indefinite weight function COEXISTENCE competitive-diffusive system bifurcation indefinite weight function coexistence
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部