期刊文献+

Dielectric Behaviour of Mixtures of Polyethylene Glycol with Propionaldehyde and Benzaldehyde

Dielectric Behaviour of Mixtures of Polyethylene Glycol with Propionaldehyde and Benzaldehyde
下载PDF
导出
摘要 The dielectric constant e' and dielectric loss e' of several mixtures of propionaldehyde-polyethylene glycol (system 1) and benzaldehyde-polyethylene glycol (system II) have been measured within the frequency band 105-107 Hz and the temperature range 20-50℃. The dielectric behaviour is discussed. on the other hand, the dielectric relaxation time T. activation energy △He, and entorpy change △Se for the dielectric relaxation as well as activation energy of viscous flow △Hv are calculated for the same temperature range. It is suggested that the observed increase in T values with increas.ng glycol content is due to an increase in the hydrogen bonding in the aggregates or clusters which would be formed between the carbonyl group of the aldehyde and the hydrogen atoms from the glycot molecules. In addition, the higher values of T, △He, and △Se in case of system (II) than that in case of system (I) may be due to the greater volume of the aggregates and the stronger dipole-dipole forces in system (II) compared with those in system (I). The dielectric constant e' and dielectric loss e' of several mixtures of propionaldehyde-polyethylene glycol (system 1) and benzaldehyde-polyethylene glycol (system II) have been measured within the frequency band 105-107 Hz and the temperature range 20-50℃. The dielectric behaviour is discussed. on the other hand, the dielectric relaxation time T. activation energy △He, and entorpy change △Se for the dielectric relaxation as well as activation energy of viscous flow △Hv are calculated for the same temperature range. It is suggested that the observed increase in T values with increas.ng glycol content is due to an increase in the hydrogen bonding in the aggregates or clusters which would be formed between the carbonyl group of the aldehyde and the hydrogen atoms from the glycot molecules. In addition, the higher values of T, △He, and △Se in case of system (II) than that in case of system (I) may be due to the greater volume of the aggregates and the stronger dipole-dipole forces in system (II) compared with those in system (I).
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期373-379,共7页 材料科学技术(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部