期刊文献+

ROBUST NONPARAMETRIC REGRESSION BASED ON L_1-NORM AND B-SPLINES

ROBUST NONPARAMETRIC REGRESSION BASED ON L_1-NORM AND B-SPLINES
原文传递
导出
摘要 ROBUSTNONPARAMETRICREGRESSIONBASEDONL_1-NORMANDB-SPLINESSHIPeide(DepartmentofProbabilityandStatistics,PekingUniversity,Beijin... This paper deals with L1-norm estimators for nonparametric regression models,where the unknown regression functions are approximated by using B-spline functions.With a potential use of the generalized Akaike information criterion (GAIC) a stepwise forward/backward strategy of selecting the B-spline knots is proposed. A procedure for calculating the L1-norm estimators is presellted via the linear programming technique. The numerical performance of the proposed estimator is compared with that of smoothing spline estimators (SSE) and TURBO based on a simulation experiment. The simulation results indicate that when error distribution is normal or of double exponential power,TURBO, SSE and L1 estimator behave similarly. However, when error distribution is contaminated normal, the performance of L1 estimator is superior to that of TURBO and SSE. When the spline knots are deterministically given, the large sample properties of the L1-norm estimator are discussed.
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1995年第2期187-192,共6页
关键词 B-SPLINE function L1-norm ESTIMATOR TURBO NONPARAMETRIC regression B-spline function,L1-norm estimator,TURBO,nonparametric regression
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部