摘要Let p be an odd prime and (n/p) be the Legendre symbol.When p≡1(mod4),it is easily seen that the numbers of quadratic residues in intervals T<sub>1</sub> =[1,(p-1)/2] and T2=[(p+1)/2,p] are equal.In other words, the distribution of quadratic
6CAI Tian Xin Department of Mathematics.Zhejiang University.Hangzhou 310028,P.R.China E-mail:trcai@mail.hz.zj.cnGRANVILLE Andrew Department of Mathematics,University of Georgia.Athens,GA 30602.USA E-mail:andrew@sophie.math.uga.edu.On the Residues of Binomial Coefficients and Their Products Modulo Prime Powers[J].Acta Mathematica Sinica,English Series,2002,18(2):277-288. 被引量:1
8XU Li hua 1, SU Xian yu 1, LIU Xun zhang 2 (1.Dept. of Opto electronics, Sichuan University, Chengdu 610064, CHN,2.JDS Uniphase, San Jose, CA 95131,USA).Investigation on Three Types of Residues in Phase-unwrapping[J].Semiconductor Photonics and Technology,2002,8(4):246-252.