摘要
1840年,斯坦纳等一个用纯几何方法证明世界名题“斯坦纳定理”:[1] 两内角平分线相等的三角形是等腰三角形。 以来,人们对定理研究的兴趣愈演愈烈。在本世纪的一般初等数学杂志上都可寻求到定理的踪迹,而且定理在数学竞赛中也非常活跃,至使成为1990年30届工MO预选题。 1980年,日本井上义夫先生将定理的内角平分绵扩充到外角平分经,出有名的“井上难题”:[2] 位于唯一最小(大)角对边的另两外角平分线相等的三角形是等腰三角形。 1989年,我国杨州师院蒋声老师构造出有趣的“蒋声问题”:[3]
出处
《晋中学院学报》
1994年第2期32-28,共2页
Journal of Jinzhong University