摘要
一个整数A整除另一个整数B,就是用A去除以B所得的余数为零,即:B=K·A(其中K为整数)。而当B=K·A时(A、B、K均为整数),对于不同的A,B中的各位数字及其它性质与A又有着特殊的关系;反过来,可以从这种特殊的关系中,较容易地判断出B是否能被A整除,从而避免冗繁的除法运算。这里给出整数整除整数的判别方法。 任何一个整数,要么可以表示为2n+1,即为奇数,要么可以表示为2~n,要么可以表示为2~K(2m+1),(其中n、K、m均为整数),后两者即为偶数。而研究整数,只须从这三方面入手即可。 定理1 能被奇数2n+1整除的整数10a+b(其中n、a为整数,b为一位整数)的特征是:这个数10a+b的末位数b以前的数字所表示的数a的5倍与b的n倍之差能被2n+1整除。反之亦然。即:若10a+b能被2n+1整除,则有5a-nb能被2n+1整除;若5a-nb能被2n+1整除,则有10a+b能被2n+1整除。
出处
《大连教育学院学报》
1994年第1期45-48,共4页
Journal of Dalian Education University