摘要
The fundamentals of acoustoelastic theory and the principle of acoustoelastic nondestructive stress analysis related ultrasonic test Instrument for weld residual stresses are described. The weld residual stress distribution in butt-welded joints was measured by the acoustoelastic stress analysis, which uses the pulse echo overlap method to measure the speed difference in ultrasonic shear waves polarized in principal directions, and a new method of evaluating the material anisotropy is proposed. The results indicate that the anisotropic coefficient of the welded metal is much greater than that of the parent metal. the longitudinal residual stress distributions measured by the acoustoelastic technique are coincident with those obtained by the theoretical analysis, and the measuring accuracy is much greater than that obtained by the resistance strain gauge.
The fundamentals of acoustoelastic theory and the principle of acoustoelastic nondestructive stress analysis related ultrasonic test Instrument for weld residual stresses are described. The weld residual stress distribution in butt-welded joints was measured by the acoustoelastic stress analysis, which uses the pulse echo overlap method to measure the speed difference in ultrasonic shear waves polarized in principal directions, and a new method of evaluating the material anisotropy is proposed. The results indicate that the anisotropic coefficient of the welded metal is much greater than that of the parent metal. the longitudinal residual stress distributions measured by the acoustoelastic technique are coincident with those obtained by the theoretical analysis, and the measuring accuracy is much greater than that obtained by the resistance strain gauge.