摘要
In this paper, the phase-formation mechanism of Bi-based superconductors was systematically investigated by using high-temperature X-ray diffraction, differential thermal analysis (DTA) and crystallization of amorphous state. The transformations among Bi-based 2201, 2212 and 2223 phases were observed, and the intergrown phenomenon of the 2201, 2212 and 2223 phases was explained. It was proposed that there exist a composition equilibrium between 2212 phase and Ca2CuO3 and a competition of thermody-namic stability among Ca2CuO3, 2212 and 2223 phases. This is why it is difficult to prepare the 2223 phase. After Pb was doped in Bi-Sr-Ca-Cu-O system, Ca2CuO3 phase in the Bi-Sr-Ca-Cu-O system was replaced by Ca2PbO4, so that the composition equilibrium and competition of thermodynamic stability mentioned above were avoided.
In this paper, the phase-formation mechanism of Bi-based superconductors was systematically investigated by using high-temperature X-ray diffraction, differential thermal analysis (DTA) and crystallization of amorphous state. The transformations among Bi-based 2201, 2212 and 2223 phases were observed, and the intergrown phenomenon of the 2201, 2212 and 2223 phases was explained. It was proposed that there exist a composition equilibrium between 2212 phase and Ca2CuO3 and a competition of thermody-namic stability among Ca2CuO3, 2212 and 2223 phases. This is why it is difficult to prepare the 2223 phase. After Pb was doped in Bi-Sr-Ca-Cu-O system, Ca2CuO3 phase in the Bi-Sr-Ca-Cu-O system was replaced by Ca2PbO4, so that the composition equilibrium and competition of thermodynamic stability mentioned above were avoided.