期刊文献+

The Realization of Elementary Configurations in Euclidean Space

The Realization of Elementary Configurations in Euclidean Space
原文传递
导出
摘要 By "an elementary configuration" we mean a set of a finite number of points,oriented byperplanes and oriented hyperspheres.In this paper,a complete solution of the following problems is given.Does there exist in Euclidean space a certain elementary configuration with a prescribed metric for cach pair of its elements? If so.how can one find the coordinate representations of the elements of such a configuration? By 'an elementary configuration' we mean a set of a finite number of points,oriented byperplanes and oriented hyperspheres.In this paper,a complete solution of the following problems is given.Does there exist in Euclidean space a certain elementary configuration with a prescribed metric for cach pair of its elements? If so.how can one find the coordinate representations of the elements of such a configuration?
出处 《Science China Mathematics》 SCIE 1994年第1期15-26,共12页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China
关键词 ELEMENTARY CONFIGURATION sub-eigenvalue pseudo-Euclidean space elementary configuration,sub-eigenvalue,pseudo-Euclidean space
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部