摘要
将一致强素(简称us—素)的概念引入到Γ─环,对Γ-环M定义了us—素根τ(M).证明了us-素Γ-环类与us—素Γ-模类是特殊类,同时证明了M的子集P是M的us—素理想当且仅当P是某us—素ΓM-模G的零化子.
The concepts of uniformly strongly prime (us-prime)and us-prime module are introduced for Fat rings,and a us-prime radical τ(M) is define(l for a Γ-ring M. It is proved that the classes of all us - prime Γ- rings and that of all us-prime Γ- modules are special claSS. We also show that a subset P of M is a us-prime ideal of M if and only if P is the annihilator of some us-prime ΓM -module G.
出处
《聊城大学学报(自然科学版)》
1994年第2期1-5,16,共6页
Journal of Liaocheng University:Natural Science Edition